3,819 research outputs found

    Promotion of Cooperation by Selective Group Extinction

    Full text link
    Multilevel selection is an important organizing principle that crucially underlies evolutionary processes from the emergence of cells to eusociality and the economics of nations. Previous studies on multilevel selection assumed that the effective higher-level selection emerges from lower-level reproduction. This leads to selection among groups, although only individuals reproduce. We introduce selective group extinction, where groups die with a probability inversely proportional to their group fitness. When accounting for this the critical benefit-to-cost ratio is substantially lowered. Because in game theory and evolutionary dynamics the degree of cooperation crucially depends on this ratio above which cooperation emerges previous studies may have substantially underestimated the establishment and maintenance of cooperation.Comment: Accepted for publication in New Journal of Physic

    Stationary point approach to the phase transition of the classical XY chain with power-law interactions

    Full text link
    The stationary points of the Hamiltonian H of the classical XY chain with power-law pair interactions (i.e., decaying like r^{-{\alpha}} with the distance) are analyzed. For a class of "spinwave-type" stationary points, the asymptotic behavior of the Hessian determinant of H is computed analytically in the limit of large system size. The computation is based on the Toeplitz property of the Hessian and makes use of a Szeg\"o-type theorem. The results serve to illustrate a recently discovered relation between phase transitions and the properties of stationary points of classical many-body Hamiltonian functions. In agreement with this relation, the exact phase transition energy of the model can be read off from the behavior of the Hessian determinant for exponents {\alpha} between zero and one. For {\alpha} between one and two, the phase transition is not manifest in the behavior of the determinant, and it might be necessary to consider larger classes of stationary points.Comment: 9 pages, 6 figure

    Implications of automatic photon quenching on compact gamma-ray sources

    Get PDF
    Aims: We investigate photon quenching in compact non-thermal sources. This involves photon-photon annihilation and lepton synchrotron radiation in a network that can become non-linear. As a result the gamma-ray luminosity of a source cannot exceed a critical limit that depends only on the radius of the source and on the magnetic field. Methods: We perform analytic and numerical calculations that verify previous results and extend them so that the basic properties of photon quenching are investigated. Results: We apply the above to the 2006 TeV observations of quasar 3C279 and obtain the parameter space of allowed values for the radius of the emitting source, its magnetic field strength and the Doppler factor of the flow. We argue that the TeV observations favour either a modest Doppler factor and a low magnetic field or a high Doppler factor and a high magnetic field.Comment: 10 pages, 12 figures, accepted for publication in Astronomy and Astrophysic

    Temporal signatures of leptohadronic feedback mechanisms in compact sources

    Get PDF
    The hadronic model of Active Galactic Nuclei and other compact high energy astrophysical sources assumes that ultra-relativistic protons, electron-positron pairs and photons interact via various hadronic and electromagnetic processes inside a magnetized volume, producing the multiwavelength spectra observed from these sources. A less studied property of such systems is that they can exhibit a variety of temporal behaviours due to the operation of different feedback mechanisms. We investigate the effects of one possible feedback loop, where \gamma-rays produced by photopion processes are being quenched whenever their compactness increases above a critical level. This causes a spontaneous creation of soft photons in the system that result in further proton cooling and more production of \gamma-rays, thus making the loop operate. We perform an analytical study of a simplified set of equations describing the system, in order to investigate the connection of its temporal behaviour with key physical parameters. We also perform numerical integration of the full set of kinetic equations verifying not only our analytical results but also those of previous numerical studies. We find that once the system becomes `supercritical', it can exhibit either a periodic behaviour or a damped oscillatory one leading to a steady state. We briefly point out possible implications of such a supercriticality on the parameter values used in Active Galactic Nuclei spectral modelling, through an indicative fitting of the VHE emission of blazar 3C 279.Comment: 19 pages, 20 figures, accepted for publication in MNRA

    Entanglement entropy in quantum spin chains with broken reflection symmetry

    Full text link
    We investigate the entanglement entropy of a block of L sites in quasifree translation-invariant spin chains concentrating on the effect of reflection symmetry breaking. The majorana two-point functions corresponding to the Jordan-Wigner transformed fermionic modes are determined in the most general case; from these it follows that reflection symmetry in the ground state can only be broken if the model is quantum critical. The large L asymptotics of the entropy is calculated analytically for general gauge-invariant models, which has, until now, been done only for the reflection symmetric sector. Analytical results are also derived for certain non-gauge-invariant models, e.g., for the Ising model with Dzyaloshinskii-Moriya interaction. We also study numerically finite chains of length N with a non-reflection-symmetric Hamiltonian and report that the reflection symmetry of the entropy of the first L spins is violated but the reflection-symmetric Calabrese-Cardy formula is recovered asymptotically. Furthermore, for non-critical reflection-symmetry-breaking Hamiltonians, we find an anomaly in the behavior of the "saturation entropy" as we approach the critical line. The paper also provides a concise but extensive review of the block entropy asymptotics in translation invariant quasifree spin chains with an analysis of the nearest neighbor case and the enumeration of the yet unsolved parts of the quasifree landscape.Comment: 12 pages and 4 figure

    Boundary correlation function of fixed-to-free bcc operators in square-lattice Ising model

    Full text link
    We calculate the boundary correlation function of fixed-to-free boundary condition changing operators in the square-lattice Ising model. The correlation function is expressed in four different ways using 2Ă—22\times2 block Toeplitz determinants. We show that these can be transformed into a scalar Toeplitz determinant when the size of the matrix is even. To know the asymptotic behavior of the correlation function at large distance we calculate the asymptotic behavior of this scalar Toeplitz determinant using the Szeg\"o's theorem and the Fisher-Hartwig theorem. At the critical temperature we confirm the power-law behavior of the correlation function predicted by conformal field theory

    Metastable precursors during the oxidation of the Ru(0001) surface

    Full text link
    Using density-functional theory, we predict that the oxidation of the Ru(0001) surface proceeds via the accumulation of sub-surface oxygen in two-dimensional islands between the first and second substrate layer. This leads locally to a decoupling of an O-Ru-O trilayer from the underlying metal. Continued oxidation results in the formation and stacking of more of these trilayers, which unfold into the RuO_2(110) rutile structure once a critical film thickness is exceeded. Along this oxidation pathway, we identify various metastable configurations. These are found to be rather close in energy, indicating a likely lively dynamics between them at elevated temperatures, which will affect the surface chemical and mechanical properties of the material.Comment: 11 pages including 9 figures. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Opacity in compact extragalactic radio sources and its effect on radio-optical reference frame alignment

    Full text link
    Accurate alignment of the radio and optical celestial reference frames requires detailed understanding of physical factors that may cause offsets between the positions of the same object measured in different spectral bands. Opacity in compact extragalactic jets (due to synchrotron self-absorption and external free-free absorption) is one of the key physical phenomena producing such an offset, and this effect is well-known in radio astronomy ("core shift"). We have measured the core shifts in a sample of 29 bright compact extragalactic radio sources observed using very long baseline interferometry (VLBI) at 2.3 and 8.6 GHz. We report the results of these measurements and estimate that the average shift between radio and optical positions of distant quasars would be of the order of 0.1-0.2 mas. This shift exceeds positional accuracy of GAIA and SIM. We suggest two possible approaches to carefully investigate and correct for this effect in order to align accurately the radio and optical positions. Both approaches involve determining a Primary Reference Sample of objects to be used for tying the radio and optical reference frames together.Comment: 4 pages, 1 figure; to appear in IAU Symposium 248 Proceedings, "A Giant Step: from Milli- to Micro-arcsecond Astrometry", eds. W.-J. Jin, I. Platais, M. Perryma

    Modeling the Emission Processes in Blazars

    Full text link
    Blazars are the most violent steady/recurrent sources of high-energy gamma-ray emission in the known Universe. They are prominent emitters of electromagnetic radiation throughout the entire electromagnetic spectrum. The observable radiation most likely originates in a relativistic jet oriented at a small angle with respect to the line of sight. This review starts out with a general overview of the phenomenology of blazars, including results from a recent multiwavelength observing campaign on 3C279. Subsequently, issues of modeling broadband spectra will be discussed. Spectral information alone is not sufficient to distinguish between competing models and to constrain essential parameters, in particular related to the primary particle acceleration and radiation mechanisms in the jet. Short-term spectral variability information may help to break such model degeneracies, which will require snap-shot spectral information on intraday time scales, which may soon be achievable for many blazars even in the gamma-ray regime with the upcoming GLAST mission and current advances in Atmospheric Cherenkov Telescope technology. In addition to pure leptonic and hadronic models of gamma-ray emission from blazars, leptonic/hadronic hybrid models are reviewed, and the recently developed hadronic synchrotron mirror model for TeV gamma-ray flares which are not accompanied by simultaneous X-ray flares (``orphan TeV flares'') is revisited.Comment: Invited Review at "The Multimessenger Approach to Gamma-Ray Sources", Barcelona, Spain, July 2006; submitted to Astrophysics and Space Science. 10 pages, including 6 eps figures. Uses Springer's ApSS macro
    • …
    corecore